- What will be the projection of vector $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ on vector $\vec{B} = \hat{i} + \hat{j}$? [July 22, 2021 (II)]
 - (a) $\sqrt{2}\left(\hat{i}+\hat{j}+\hat{k}\right)$ (b) $2\left(\hat{i}+\hat{j}+\hat{k}\right)$
 - (c) $\sqrt{2} \left(\hat{i} + \hat{j} \right)$ (d) $\left(\hat{i} + \hat{j} \right)$
 - (d) Projection of vector \vec{A} on vector \vec{B} is given by

$$(A \cos \theta) \hat{B} = A \left(\frac{\vec{A} \cdot \vec{B}}{AB}\right) \hat{B} = \frac{\vec{A} \cdot \vec{B}}{B} \hat{B}$$

$$= \frac{2}{\sqrt{2}} \left(\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}}}{\sqrt{2}} \right) = \hat{\mathbf{i}} + \hat{\mathbf{j}}$$